martes, 18 de junio de 2019

Agente Viajero

Problema del Agente Viajero

Problema del Agente Viajero


Resultado de imagen para problemas del agente viajero


En el Problema del Agente Viajero - TSP (Travelling Salesman Problem), el objetivo es encontrar un recorrido completo que conecte todos los nodos de una red, visitándolos tan solo una vez y volviendo al punto de partida, y que además minimice la distancia total de la ruta, o el tiempo total del recorrido.

Este tipo de problemas tiene gran aplicación en el ámbito de la logística y distribución, así como en la programación de curvas de producción.

El problema del agente viajero tiene una variación importante, y esta depende de que las distancias entre un nodo y otro sean simétricas o no, es decir, que la distancia entre A y B sea igual a la distancia entre B y A, puesto que en la práctica es muy poco probable que así sea. 

La cantidad de rutas posibles en una red está determinada por la ecuación:

(n-1)!

Es decir que en una red de 5 nodos la cantidad de rutas probables es igual a (5-1)! = 24, y a medida que el número de nodos aumente la cantidad de rutas posibles crece factorialmente. En el caso de que el problema sea simétrico la cantidad de rutas posibles se reduce a la mitad, es decir:
( (n-1)! ) / 2

Lo cual significa un ahorro significativo en el tiempo de procesamiento de rutas de gran tamaño.

MÉTODOS DE SOLUCIÓN

La complejidad del cálculo del problema del agente viajero ha despertado múltiples iniciativas por mejorar la eficiencia en el cálculo de rutas. El método más básico es el conocido con el nombre de fuerza bruta, que consiste en el cálculo de todos los posibles recorridos, lo cual se hace extremadamente ineficiente y casi que se imposibilita en redes de gran tamaño. También existen heurísticos que se han desarrollado por la complejidad en el cálculo de soluciones óptimas en redes robustas, es por ello que existen métodos como el vecino más cercano, la inserción más barata y el doble sentido. Por último se encuentran los algoritmos que proporcionan soluciones óptimas, como el método de branch and bound (ramificación y poda), que trabaja el problema como un algoritmo de asignación y lo resuelve por medio del método simplex.


Posibles rutas
A - B - D - C - A = 9 + 15 + 4 + 7 = 35 km
A - B - C - D - A = 9 + 10 + 4 + 8 = 31 km
A - C - B - D - A = 7 + 10 + 15 + 8 = 40 km

Rutas simétricas
A - D - C - B - A = 8 + 4 + 10 + 9 = 31 km
A - C - D - B - A = 7 + 4 + 15 + 9 = 35 km
A - D - B - C - A = 8 + 15 + 10 +7 = 40 km


MÉTODO DEL VECINO MÁS CERCANO


El método del vecino más cercano es un algoritmo eucarístico diseñado para solucionar el problema del agente viajero, no asegura una solución óptima, sin embargo suele proporcionar buenas soluciones, y tiene un tiempo de cálculo muy eficiente. El método de desarrollo es muy similar al utilizado para resolver problemas de árbol de expansión mínima.


El método consiste en una vez establecido el nodo de partida, evaluar y seleccionar su vecino más cercano. En este caso:



En la siguiente iteración habrá que considerar los vecinos más cercanos al nodo C (se excluye A por ser el nodo de origen):



En la siguiente iteración los vecinos más cercanos de D serán C, con quien ya tiene conexión, A quién es el nodo de origen y B, por esta razón B se debe seleccionar por descarte. Al estar en B todos los nodos se encuentran visitados, por lo que corresponde a cerrar la red uniendo el nodo B con el nodo A, así entonces la ruta solución por medio del vecino más próximo sería A, C, D, B, A = 7, 4, 15, 9 = 35 km.

Este es un caso en el que a pesar de tener una red compuesta por pocos nodos, el método del vecino más cercano no proporciona la solución óptima, la cual calculamos con el método de fuerza bruta como 31 km.


Cuestionario

1°-¿Cual es el objetivo del Problema del gente Viajero?
El objetivo es encontrar un recorrido completo que conecte todos los nodos de una red, visitándolos tan solo una vez y volviendo al punto de partida.

2°-¿Este tipo de problemas en que ámbito se aplica?
Este tipo de problemas tiene gran aplicación en el ámbito de la logística y distribución, así como en la programación de curvas de producción.

3°-Menciona los métodos que conoces para solucionar el problema.
-Método de Fuerza Bruta
-Método del vecino mas cercano
-Método de Branch and Bound 

4°-¿En que consiste el método de Fuerza Bruta?
El método de la fuerza bruta no implica la aplicación de ningún algoritmo sistemático, tan solo consiste en explorar todos los recorridos posibles.

5°-¿En que consiste el método del vecino mas cercano?
El método de desarrollo es muy similar al utilizado para resolver problemas de árbol de expansión mínima.

6°-¿Qué es el método del vecino mas cercano?
El método del vecino más cercano es un algoritmo heurístico diseñado para solucionar el problema del agente viajero, no asegura una solución óptima, sin embargo suele proporcionar buenas soluciones, y tiene un tiempo de cálculo muy eficiente. 

7°-¿En que consiste el método del vecino mas cercano?
El método consiste en una vez establecido el nodo de partida, evaluar y seleccionar su vecino más cercano. 

8°-Describe el Agente Viajero.
En el problema se presentan N! rutas posibles, aunque se puede simplificar ya que dada una ruta nos da igual el punto de partida.

9°-¿Que nos proporciona el método de Branch and Bound?
El método de branch and bound(ramificación y poda), nos proporciona una solución óptima del problema del agente viajero, calculando mediante el algoritmo simplex la solución del modelo.

10°-¿Como es el origen del Agente Viajero?
El origen de los problemas del agente viajero no esta claro.Una guía para agentes viajeros de 1832 menciona el problema e incluye ejemplos de viajes a traves de Alemania y Suiza.

martes, 28 de mayo de 2019

MAPAS DE KARNAUGH

MAPA DE KARNAUGH

Un mapa de Karnaugh (también conocido como tabla de Karnaugh o diagrama de Veitch, abreviado como Mapa-K o Mapa-KV) es un diagrama utilizado para la simplificación de funciones algebraicas Booleanas. El mapa de Karnaugh fue inventado en 1953 por Maurice Karnaugh, un físico y matemático de los laboratorios Bell.
Los mapas de Karnaugh reducen la necesidad de hacer cálculos extensos para la simplificación de expresiones booleanas, aprovechando la capacidad del cerebro humano para el reconocimiento de patrones y otras formas de expresión analítica, permitiendo así identificar y eliminar condiciones muy inmensas.
El mapa de Karnaugh consiste en una representación bidimensional de la tabla de verdad de la función a simplificar. Puesto que la tabla de verdad de una función de N variables posee 2N filas, el mapa K correspondiente debe poseer también 2N cuadrados. Las variables de la expresión son ordenadas en función de su peso y siguiendo el código Gray, de manera que sólo una de las variables varía entre celdas adyacentes. La transferencia de los términos de la tabla de verdad al mapa de Karnaugh se realiza de forma directa, albergando un 0 ó un 1, dependiendo del valor que toma la función en cada fila. Las tablas de Karnaugh se pueden fácilmente realizar a mano con funciones de hasta 6 variables, para funciones de mayor cantidad de variables es más eficiente el uso de software especializado.




Reglas de simplificación

1.  Las agrupaciones son exclusivamente de unos. Esto implica que ningún grupo puede contener ningún cero.
2Las agrupaciones únicamente pueden hacerse en horizontal y vertical. Esto implica que las diagonales están prohibidas.
3.  Los grupos han de contener 2n elementos. Es decir que cada grupo tendrá 1,2,4,8... número de unos.
  
4.  Cada grupo ha de ser tan grande como sea posibleTal y como lo ilustramos en el ejemplo.
5.  Todos los unos tienen que pertenecer como mínimo a  un grupo. Aunque pueden pertenecer a más de uno.
6.  Pueden existir solapamiento de grupos.
7.  La formación de grupos también se puede producir con las celdas extremas de la tabla. De tal forma que la parte inferior se podría agrupar con la superior y la izquierda con la derecha tal y como se explica en el ejemplo.
8.  Tiene que resultar el menor número de grupos posibles siempre y cuando no contradiga ninguna de las reglas anterioresEsto es el número de grupos ha de ser minimal.
  }

CUESTIONARIO

1°-¿Que es un mapa de Karnaugh?
Los Mapas de Karnaugh son una herramienta muy utilizada para la simplificación de circuitos lógicos. 

2°-¿Cuando se invento el Mapa de karnaugh?
El mapa de Karnaugh fue inventado en 1953 por Maurice Karnaugh, un físico y matemático de los laboratorios Bell.

3°-¿En que consiste el Mapa de Karnaugh?
El mapa de Karnaugh consiste en una representación bidimensional de la tabla de verdad de la función a simplificar.

4°-¿Como se ordenan las variables de la expresión?
Las variables de la expresión son ordenadas en función de su peso y siguiendo el código Gray, de manera que sólo una de las variables varía entre celdas adyacentes. 

5°-¿Cuando se utiliza un Mapa de Karnaugh?
Los diagramas de Karnaugh pueden ser utilizados en la simplificación de sentencias definidas en lógica Booleana, construcción de estaciones de clasificación, selección y control de calidad de piezas fabricadas, entre otras aplicaciones.

6°-¿Como se representa el numero de renglones y columnas de un Mapa de Karnaugh? 
El número de renglones y columnas de un mapa de Karnaugh normalmente suele representarse como un mapa cuadrado (número de renglones = número de columnas) cuando el número de variables es par (2, 4, 6, 8... etc) y cuando el número de variables es impar el número de renglones igual a la mitad del número de columnas.

7°-Menciona un software disponible para asistir el mapeo de Karnaugh
  • Gorgeus Karnaugh K-Mapas minimización programa 

8°-¿Cuales son las ventajas de usar el Mapa de Karnaugh?
Los mapas de Karnaugh reducen la necesidad de hacer cálculos extensos para la simplificación de expresiones booleanas.

9°-¿Cómo se realizan las tablas de Karnaugh?
Las tablas de Karnaugh se pueden fácilmente realizar a mano con funciones de hasta 6 variables, para funciones de mayor cantidad de variables es más eficiente el uso de software especializado.

10°-¿Con que otro nombre se conoce a los Mapas de Karnaugh?
También conocido como tabla de Karnaugh o diagrama de Veitch, abreviado como Mapa-K o Mapa-KV.

martes, 16 de abril de 2019

TENICAS DE CONTEO

 Las tecnicas de conteo se utilizan para calcular, el numero de veces o la canridad de veces en que un suceso o accion se presenta.
Las tecnicas utilizadas para el conteo son:

  • Permutacion
  • Convinacion
  • Arbol
Las tecnicas des arbol utiliza una representacion grafica de un numero de veces en que puede realizarce una accion:
Un arbol se dibuja de la siguiente manera.
Resultado de imagen para arboles de conteo

Ejercicio:
Luis fernando decea conocer de cuantas formas distintas puede vestirce si tiene las siguientes prendas: un pantalon negro, azul y beige, una playera azul, blanca,roja, y negra, Unos zapatos negros y unos tenis.



                          A
N                       B

                          R
                          N




                          A
A                       B

                          R
                          N
                          
                         A

B                      B

                          R
                          N



Un matrimobio tiene 3 hijos, basandoce en el siguiente diagrama de arbol ¿cual es la probabilidad de que los dos sean del mismo sexo?
Resultado de imagen para arboles de conteo 3 hijos

Se determina la variable que se van a utilizar en el diagrama "sea c" cara "sea s" sello


Resultado de imagen para arboles de conteo cara sol
Se tiene una tienda de pantalones,2 camisas y 2 zapatos de color azul y negro. Calcula el numero de combinaciones posibles .
Resultado de imagen para arboles de conteo tienda de pantalones
                                                             PERMUTACIONES

Se llama permutaciones de N elementos a los diferentes grupos que se pueden formar con esos elementos siguiendo las siguientes reglas.
  1. Entran todos los elemntos
  2. Si importa el orden
  3. Nos se repiten los elementos
    Si el ejercicio que se plantea sigue esas tres reglas la formula a aplicar es permutacion.
PN=N1
Donde N es el numero de elementos que van a participar en las agrupaciones.

cuantos numeros de 3 cifras diferentes se pueden frmar on los digitos 1,2,3

PN=N!             PN=N!
                         P3=3
                         3*2*1=6

Ejercicios Permutaciones

  1. ¿Cuantos números de 3 cifras diferentes se puede formar con los dígitos 1,2,3?

  3*2*1=6                                              1,2,3

                                                             1,3,2

                                                             2,3,1
                                                             2,1,3
                                                             3,1,2
                                                             3,2,1
    
     2.¿Cuantos grupos diferentes de tres vocales se puede formar sin que se repitan los elementos, usando 3 vocales: A,E,O?


                       3*2*1=6                        A,E,O
                                                            A,O,E

                                                            E,A,O

                                                            E,O,A
                                                            O,A,E
                                                            O,E,A



    3.¿Cuantos grupos de 4 elementos se puede formar con los digitos 3,5,7,9?


                    P4=4!                    4*3*2*1=24

              3,5,7,9                     5,3,7,9                      7,5,9,3                      9,3,5,7
              3,5,9,7                     5,3,9,7                      7,5,3,9                      9,3,7,5

              3,9,7,5                     5,9,3,7                      7,3,5,9                      9,7,3,5

              3,9,5,7                     5,9,7,3                      7,3,9,5                      9,7,5,3
              3,7,9,5                     5,7,3,9                      7,9,3,5                      9,5,3,7
              3,7,5,9                     5,7,9,3                      7,9,5,3                      9,5,7,3



    4. Antiguamente los barcos se comunicaban entre si usando banderas de diferentes                 colores de manera ordenada.

                   P4=4!

                   4*3*2*1= 24 mensajes

                    

                   P5=5!
                   5*4*3*2*1=120 mensajes 



Permutaciones con repetición

Se llama permutaciones con repetición a los grupos de elementos que se forman cuando "n" elementos,donde e primer elemento se repite n veces, el segundo también se repite n veces y así se repiten hasta llegar al final de la lista. Estas agrupaciones deben seguir las siguientes reglas;
  1. Entran todos los elementos.
  2. Si importa el orden.
  3. Si se repiten los elementos.
La formula para realizar el calculo de las permutaciones con repetición es la siguiente.
                                                           
                                                            PRn=____Pn_____
                                                                          a! b! c!

Con las cifras 2,2,2,3,3,3,3,4,4 ¿Cuantos números de 9 cifras se pueden formar? Si los datos son n=9  a=3   b=4   c=2


                              abc
                      PRn         =____Pn______
                                             a! b! c!

                             3,4,2
                     PRn =______Pa______= 9*8*7*6*5*4*3*2*1=  9*8*7*6 = 15120 = 1260
                                        3! 4! 2!               3*2*1.4*3+2  *1          6*2             12


                          
Permutaciones Circulares 

Las permutaciones circulares se utilizan cuando os elementos se van a ordenar en circulo

Por ejemplo
Los comensales en una mesa se van a sentar de modo que el primer elemento que se situe en la mesa determina el principio y el fin de la lista.

La formula  para la permutacion circular es PC n-1=n!

Ejercicio  
  • De cuantas formas distintas pueden sentarse 8 personas alrededor de una mesa redonda.
                                PC n-1= n!

                                PC 8-1= 71 =7*6*5*4*3*2*1= 5040



               PERMUTACIONES                      FORMULA                     REGLAS
                                                                                                          
                                                                                                      1. Entran todos los elementos.
                 Permutaciones                                 P4= 4!                  2. Si importa el orden.
                                                                                                      3. No se repiten los elementos.
                                                                                                                


                  Con repetición                            PRn=__Pn__                 222      3333      44                                                                                                  a! b! c!                   a            b         c



                     Circulares                                 PCn-1 = n!               Tienen que ser un problema                                                                                                                        relacionado a un circulo.
                                                                                                                



Ejercicios de Permutaciones

  1. ¿Cuantas palabras distintas de cuatro letras se pueden formar? Escriba el listado que se forma. 
                  Pn = 4!
                 
                  Pn = n! = 4! = 4*3*2*1= 24 palabras 

                                          ALEX          LAEX          ELAX          XAEL 
                                          AELX          LAXE          ELXA          XALE
                                          AEXL          LXAE          EXAL          XLAE
                                          AXLE          LXEA          EXLA          XLEA
                                          AXEL          LEAX          EALX          XELA
                                          ALXE          LAEX          EAXL          XEAL  



     2.¿Cuantas palabras diferentes de 5 letras se puede fomar con la palabra LIBRO?

                 Pn = n! =5! = 5*4*3*2*1= 120 palabras 


     3.¿Cuantas palabras diferentes de 6 letras se puede formar la palabra TRATAR?

                PRn = ____Pn_____
                                a! b! c!

                      2,2,2
                PR          =____P6_____ =    6*5*4*3*2*1   =___360___ = 90 palabras
                                     2! 2! 2!           2*1 * 2*1 * 2*1            4


    4.¿Cuantas palabras de 10 letras se puede formar usando la palabra TERMÓMETRO

              PR =____P10____ =    10*9*8*7*6*5*4*3*2*1     = 1814400 = 113400 palabras
                        2! 2! 2! 2! 2!    2*1 x 2*1 x 2*1 x 2*1 x 2*1          16



 Principios Fundamentales del Conteo 

La enumeración o conteo puede parecer un proceso obvio que un estudiante aprende al estudio aritmética por primera vez. Pero luego según parece se presta poca atención en lo que se refiere a un desarrollo mas amplio del conteo, conforme el estudiante pasa áreas mas difíciles de las matemáticas  como el álgebra, la geometría, la trigonometria y el calculo. En consecuencia deberá servir como advertencia acerca del conteo.
La enumeración no termina con la aritmética, también tiene aplicaciones como: la teoría de códigos, la probabilidad y la estadística. 

Reglas de la Suma y Producto
  1. Si una primera tarea puede realizarse de "m" formas mientras que una segunda tarea puede realizarse  de "n" formas, y no es posible realizar ambas tareas de manera simultanea entonces para llevar a cabo cualquiera de ellas.
  2. Si un procedimiento se puede descomponer en las etapas primera y segunda, si existe "m" resultados posibles de la primera etapa, para cada uno de estos resultados existen "n" resultados posibles para la segunda etapa, entonces el procedimiento total se puede realizar en el orden dado. 

CUESTIONARIO

1°-¿Qué son las Técnicas de Conteo?
Las técnicas de conteo son una serie de métodos de probabilidad para contar el número posible de arreglos dentro de un conjunto o varios conjuntos de objetos. 

2°-¿Cuando se usan las Técnicas de Conteo?
Estas se usan cuando realizar las cuentas de forma manual se convierte en algo complicado debido a la gran cantidad de objetos y/o variables.

3°-Menciona las Técnicas de Conteo que conozcas.
Diagrama de árbol, permutaciones, combinaciones, variaciones. 

4°-¿Que es un Diagrama de Árbol?
Un diagrama de árbol o árbol de probabilidad es una herramienta que se utiliza para determinar si en realidad en el cálculo de muchas opciones se requiere conocer el número de objetos que forman parte del espacio muestral, estos se pueden determinar con la construcción de un diagrama de planta.

5°-¿Que son las Permutaciones?
Se llama permutaciones de "n" elementos a los diferentes grupos que se pueden formar con esos elementos, siguiendo las siguientes reglas.
  1. Entran todos los elementos.
  2. Si importa el orden.
  3. No se repitan los elementos.
6°-¿Que son las Variaciones?
Se llama variaciones ordinarias de m elementos tomados de n en n (m = n) a los distintos grupos formados por n elementos, eligiéndolos de entre los m elementos de que disponemos, de forma que: – No entran todos los elementos.

7°-¿Qué son las combinaciones?
Una combinación es una selección de elementos de una colección, de manera que el orden de selección no importa.

8°-¿Que es una Permutación con Repetición?
Se llama permutaciones con repetición a los grupos de elementos que se forman cuando "n" elementos,donde e primer elemento se repite n veces, el segundo también se repite n veces y así se repiten hasta llegar al final de la lista. Estas agrupaciones deben seguir las siguientes reglas;
  1. Entran todos los elementos.
  2. Si importa el orden.
  3. Si se repiten los elementos.
9°-¿Cuando se utiliza una Permutación Circular?
Las permutaciones circulares se utilizan cuando los elementos se van a ordenar en circulo.

10°-¿Cual es la formula para una Permutacion Circular?
La formula  para la permutacion circular es PC n-1=n!